PTI-609: a novel analgesic that binds filamin A to control opioid signaling.
نویسندگان
چکیده
Binding a critical pentapeptide region on the scaffolding protein filamin A regulates signaling of mu opioid receptors (MORs) so that their activation should not result in the opioid tolerance, dependence and addiction associated with current opioid painkillers. Additionally, we show that compounds that bind this site on filamin A reduce release of inflammatory cytokines. PTI-609 is a new chemical entity that binds filamin A with picomolar affinity and also activates opioid receptors via a novel binding domain. PTI-609 and analogs have similar analgesic efficacy to morphine by oral administration in mice, provide some anti-inflammatory activity in the rat collagen-induced arthritis model, and show no conditioned place preference at analgesic doses, suggesting no potential for abuse and addiction. PTI-609 was designed after discovering filamin A as the high-affinity target of naltrexone or naloxone. Combined with opiates, ultra-low-dose naloxone or naltrexone can enhance and prolong the analgesia of the opiate alone and prevent or attenuate opioid tolerance, dependence and addictive properties. We will review here the mechanism of action of ultra-low-dose naltrexone and naloxone, the discovery of filamin A as their high-affinity target, and the rationale as to why the current, dualfunction new chemical entity should not only be easier to develop but also more consistently efficacious than opioids combined with ultra-low-dose naltrexone. This new class of compounds, as well as the concept, screening assay and pharmacophore model, are covered in a family of recent patent applications.
منابع مشابه
PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis.
We show that amyloid-β1-42 (Aβ42) triggers a conformational change in the scaffolding protein filamin A (FLNA) to induce FLNA associations with α7-nicotinic acetylcholine receptor (α7nAChR) and toll-like receptor 4 (TLR4). These aberrant associations respectively enable Aβ42's toxic signaling via α7nAChR to hyperphosphorylate tau protein, and TLR4 activation to release inflammatory cytokines. P...
متن کاملHigh-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence
Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a ...
متن کاملReducing amyloid-related Alzheimer's disease pathogenesis by a small molecule targeting filamin A.
PTI-125 is a novel compound demonstrating a promising new approach to treating Alzheimer's disease (AD), characterized by neurodegeneration and amyloid plaque and neurofibrillary pathologies. We show that the toxic signaling of amyloid-β(42) (Aβ(42)) by the α7-nicotinic acetylcholine receptor (α7nAChR), which results in tau phosphorylation and formation of neurofibrillary tangles, requires the ...
متن کاملAltered filamin A enables amyloid beta- induced tau hyperphosphorylation and neuroinflammation in Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disease with proteopathy characterized by abnormalities in amyloid beta (Aβ) and tau proteins. Defective amyloid and tau propagate and aggregate, leading to eventual amyloid plaques and neurofibrillary tangles. New data show that a third proteopathy, an altered conformation of the scaffolding protein filamin A (FLNA), is critically linked to the a...
متن کاملIgnavine: a novel allosteric modulator of the μ opioid receptor
Processed Aconiti tuber (PAT) is used to treat pain associated with various disorders. Although it has been demonstrated that the κ opioid receptor (KOR) signaling pathway is a mediator of the analgesic effect of PAT, active components affecting opioid signaling have not yet been identified. In this study, we explored candidate components of PAT by pharmacokinetic analysis and identified ignavi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Recent patents on CNS drug discovery
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2010